1) ASSESSMENT SUMMARY AND PURPOSE:

The Greater Baton Rouge Clean Cities Coalition (GBRCCC) serves a five-parish region that covers a total of 2,322 square-mile geographic area. For this study, we focus on the East Baton Rouge city-parish for placement of electric vehicle infrastructure. Our 70 square-mile capitol city is the anchor of a nine-parish Metropolitan Statistical Area and has a population density of 966 persons per square mile, according to 2010 U.S. Census Bureau information. The remaining GBRCCC parishes have a much lower average population density of 185 persons per square mile. This information, combined with the fact that East Baton Rouge city-parish is centrally located within the region, provided our justification to focus on just one of our five parishes. As the map “Distances from East Baton Rouge Universities and Colleges” illustrates, any point within the GBRCCC geographical area is within a 40-mile drive from our coalition headquarters at Louisiana State University.

The purpose of this Plug-In Vehicle Feasibility Study is to assess the potential for these advanced technology automobiles to be adopted in the Greater Baton Rouge area. Since plug-in electric vehicles still have a limited battery range, we recognize that a sufficient charging infrastructure must be developed in order for consumers to feel comfortable purchasing the newly introduced EVs. In addition to the physical capacity for EV charging, we have determined that extensive educational outreach will provide consumers with the information necessary to make a decision to purchase an EV. We think that this process may be time intensive for our area and in this study, will outline the role of our coalition, barriers to EV deployment, public education needs, installation processes, as well as current implementations and future potential.

2) PAST & CURRENT PLUG-IN VEHICLE IMPLEMENTATION

The newly installed electric vehicle charging stations at Louisiana State University is the first major initiative supporting plug-in vehicles in the Greater Baton Rouge region. In addition to increasing feasibility, the charging stations will promote awareness of electric vehicle technology. In fact, installation of the new infrastructure has already spurred media coverage and enhanced local public information availability regarding the advanced vehicle technologies currently available. This project has also prompted the participation in the EV Stakeholder working group that provided input for this study.

The LSU campus installation of two charging stations promote the use of plug-in vehicles by easing “range anxiety” of local consumers, spreading awareness of advanced automobile technologies, and proving data collection opportunities for the local electric utility. At an announcement ceremony held in July of 2011, the Greater Baton Rouge Clean Cities Coalition coordinator, Lauren Stuart, presented facts about the benefits of EV’s and other project partners expressed a commitment to pursuing
electric vehicle implementation in our region. This public/private partnership is part of a regional “University EV Pilot Program” sponsored by utility provider and coalition stakeholder, Entergy. Additional partners include GBRCCC, LSU, Coloumb Technologies and Verdek EV Solutions.

GBRCCC coordinator played a facilitation role in this partnership. As part of that responsibility, we invited our state-level sponsor, the Louisiana Department of Natural Resources (LDNR) to present during the press conference announcing the installation of LSU campus EVSE. Chris Knotts, Director of DNR Technology Assessment Division, represented the state energy office and provided perspective of the government regarding electric vehicles. The local media printed his statement, “in a campus and urban setting, electric vehicles are perfect.”

Although there are currently no EVs utilizing the existing charging points, the recently installed LSU campus EVSE open doors for long-term EV adoption opportunities. Installing these ChargePoint locations at the state flagship university is a direct way to ensure that tomorrow’s leaders gain exposure to this alternative fuel. Also, LSU is a focal point in the community and is an excellent venue for reaching a broader public audience. As new electric vehicle technology emerges, LSU could deploy prototypes and provide publicity in the region. Not only could this be useful for research and development purposes, hundreds of thousands of football fans could see the demonstration vehicles while tailgating in Tiger tradition before home games.

3) ASSESSMENT OF PLUG-IN VEHICLE IMPLEMENTATION POTENTIAL:

Original equipment manufacturers (OEMs) have not prioritized the GBRCCC region for introduction of electric vehicles to the US market. At this time, local dealerships are beginning to announce the availability of EV orders and display the vehicles in showrooms. Chevrolet’s Volt will be available to consumers in Greater Baton Rouge region by December of this year or January 2012. The Nissan Leaf is expected to go on roll out in our area by March of 2012. No information could be obtained regarding an expected availability for the Ford Focus.

GBRCCC stakeholder, East Baton Rouge City-Parish Planning Commission reported that there is no public or private electric-vehicle charging infrastructure currently being planned. However, the city-parish has incorporated general support of alternative fuel vehicles and infrastructure through two major plans. FUTUREBR Transportation Element includes a priority to “promote use of alternative fuels and advanced technologies in public and private vehicle fleets.” Additionally, the City of Baton Rouge – Parish of East Baton Rouge Sustainable Government Operations Plan’s Transportation Chapter has an action item to “replace all City-Parish vehicles (except patrol cars) with hybrids, electric, biodiesel, CNG or other alternative fuel vehicles.”
At this time, both federal and state tax incentives are available to offset the initial purchase cost of an electric vehicle. The Louisiana Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Tax Credit was enacted by state legislature in 2009 as Act 469 and entered into law as Revised Statute RS 47:6035. Electric vehicles registered in the state of Louisiana are eligible for this credit of 50% of the incremental vehicle retail cost or 10% of the purchase price up to $3,000. Incremental cost can be determined by calculating the difference between a given EV and its comparable gasoline automobile. In addition to an offset to vehicle purchase costs, this state tax credit also includes are expenses related to the fueling equipment, covering 50% of the purchase and installation costs. Either individuals or businesses in the state of Louisiana may claim the AFV and fueling infrastructure income tax credit.

GBRCCC stakeholders provided input regarding which fleets in our area would be most likely to adopt plug-in vehicles and identified four broad categories including large businesses, utilities, universities, and public agencies. At this time no commitments to purchase have been made and we anticipate that the adoption may occur incrementally and full implementation would be a long-term goal looking out to the year 2016. Some of the first adopters, our input collection found, may be delivery and/or distribution companies that have high vehicle miles traveled and could realize a return on investment in a quick payback period. Utilities have also been identified as a first adopter because of their interest in developing the market for electricity as a fuel.

GBRCCC stakeholder, Entergy, does use CNG and electric-hybrid vehicles in its fleet already yet has not yet made a decision whether to incorporate plug-in electric or when. LSU currently uses several neighborhood low-speed electric vehicles already and may be unlikely to purchase standard plug-in vehicles since the distances on campus are short and the speed limits are low. GBRCCC stakeholder, Louisiana Department of Environmental Quality, expressed hesitance in planning for EV purchases since the agency is state-wide and vehicles are driven long distances. Additionally, public agencies are under severe budget constraints at this time. Perhaps when funding is available, municipalities would be the most likely government entity to adopt EVs.

Charging stations made available for the use of the general public is a first step to introducing the vehicles to the market. GBRCCC stakeholders suggest that funding for electric vehicle supply equipment (EVSE) could be provided by federal tax dollars or utilities. Right now federal funding is available for studies and limited infrastructure support and the state tax credit covers 50% of installation equipment expenses. Also, utilities are expressing interest in providing EVSE through pilot programs such as Entergy’s University charging station program. Our stakeholders suggested that since utilities may have the option of receiving rate recovery from the Public Service Commission, they are a likely provider of the charging infrastructure given the appropriate policy conditions.

The Greater Baton Rouge Clean Cities Coalition (GBRCCC) identified eleven recommended locations for EVSE infrastructure in the city of Baton Rouge Numerous
factors were taken into consideration in making the recommendations, including
demographic data, locations of interest, and business fleets. In order to satisfy a wide
range of objectives, we found that EVSE near the addresses below would be most
advantageous to best equip the 5-parish region covered by the coalition to meet the
needs of current and future electric vehicle owners in the Greater Baton Rouge area
(Appendix 1).

<table>
<thead>
<tr>
<th>EVSE Installation Location Recommendation</th>
<th>Area/Factor Satisfied</th>
<th>ADDRESS</th>
<th>ZIP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Main St. Farmers Market</td>
<td>Downtown</td>
<td>504 North 5th Street</td>
<td>70802</td>
</tr>
<tr>
<td>Southern University Agriculture Research and Extension Center</td>
<td>University</td>
<td>601 Harding Blvd</td>
<td>70807</td>
</tr>
<tr>
<td>Louisiana State University</td>
<td>University</td>
<td>3357 Highland Rd</td>
<td>70802</td>
</tr>
<tr>
<td>Baton Rouge Community College</td>
<td>University</td>
<td>5310 Florida Blvd</td>
<td>70806</td>
</tr>
<tr>
<td>Capital Area Technical College</td>
<td>University</td>
<td>3250 N Acadian Thruway E</td>
<td>70806</td>
</tr>
<tr>
<td>Central Branch Library</td>
<td>NE Baton Rouge</td>
<td>11260 Joor Rd.</td>
<td>70818</td>
</tr>
<tr>
<td>Mall of Cortana</td>
<td>Mall</td>
<td>9401 Cortana Place</td>
<td>70815</td>
</tr>
<tr>
<td>Budweiser Beverage Co</td>
<td>Fleet near Airline</td>
<td>11811 Reiger Rd.</td>
<td>70809</td>
</tr>
<tr>
<td>Ward Park Trailhead Entrance</td>
<td>Near Mall of LA</td>
<td>8401 Bluebonnet Boulevard</td>
<td>70836</td>
</tr>
<tr>
<td>SLU School of Nursing</td>
<td>Fleet near I-10/I-12 split</td>
<td>8047 Summa Ave</td>
<td>70809</td>
</tr>
<tr>
<td>BREC Farr Park</td>
<td>SW Baton Rouge</td>
<td>6402 River Road</td>
<td>70820</td>
</tr>
</tbody>
</table>

By surveying East Baton Rouge Parish public officials, citizens, and businesses, we
determined five demographic identifiers that could potentially show the greatest interest
in electric vehicles: middle-to-upper income level households, retired citizens, college
students, and Toyota Prius owners. Using geographic information systems (GIS) to
analyze U.S. census and consumer marketing data, we mapped areas with the greatest
densities of where these populations exist throughout Baton Rouge (Appendices 2-5).
Next, we compared these areas to locations of interest in Baton Rouge that have
previously been identified as ideal for EVSE infrastructure, including universities,
business fleets, libraries, and large malls (Appendix 6,7). Finally, we used 5-mile ring
buffers to determine the local range of the average EV from four major college
campuses, Louisiana State University (LSU), Capital Area Technical College, Baton
Rouge Community College, and Southern University (Appendix 8).

We found that the locations of interest—libraries, universities, malls, and fleets—
often fell within key demographic areas of Baton Rouge and often along three key road
corridors, Airline Highway, Florida Blvd., and the I-10 / I-12 split. For example, the
highest densities of retired citizens and mid-to-high household income levels were both
found to be along these roads. Also, the largest populations of public college students
in Baton Rouge were found in the Louisiana State University and Southern University
areas. Lastly, the highest number of Toyota Prius owners fell similarly within the
previous areas of interest, such as downtown, eastern, and southeastern Baton Rouge
and the LSU area (Appendix 4).

We began to pinpoint locations within key regions most suitable for EVSE infrastructure,
also taking into account access to main roads, adequate space for small and large
vehicles, and distance from key locations. We found that locations of interest worked
well for many cases, for example, Southern University, the Mall of Cortana, and Mockler
Beverage Co. Alternatively, two locations, the BREC Ward Park Trailhead and
Southeastern Louisiana University School of Nursing, were chosen when the location of
interest did not have adequate road access and the new location could better serve a
greater diversity of public and private uses. Additionally, the Central Branch Library location (11260 Joor Rd.) and BREC Farr Park (6402 River Rd.) were added to create access in northeastern and southwestern Baton Rouge, respectively. For the downtown area, the Main St. Farmers Market (504 North 5th St.) was selected as an additional location of interest, sufficient parking and road access, and close proximity to the Louisiana Department of Environmental Quality.

4) PERMITTING PROCESS ANALYSIS:

Currently the permits for EVSE installations are handled by the East Baton Rouge City-Parish Electrical Department. Although there have not been requests for permits in the past, the office is aware of the code requirements for EVSE installations. Office representatives assert that their role is simply to “enforce code requirements” of the National Electrical Code, NFPA 70. The timeline from initiation to approval depends upon the project scope, but generally, any certified electrical contractor may obtain a permit upon request. Drawings may be necessary for approval in certain situations.

5) ANALYSIS OF PUBLIC INFORMATION AND EDUCATION NEEDS:

Figuring out how and where to charge a plug-in is the greatest logistical challenge for potential buyers of plug-in vehicles identified in our input sessions. Consumers considering vehicles that require a Level 2 charging station exhibit the greatest need of EVSE information. Unlike the Level 1 EVSE charges that use a standard three-prong 120-volt household plug, 240-volt Level 2 EVSE requires the installation of charging equipment and a dedicated electrical circuit. Level 2 are likely to be a common installation in single-family residences because of availability of 240-volt service in most houses. Also, the Level 2 wattage is able to charge a typical EV battery overnight and some vehicles, such as the Nissan Leaf, require Level 2 charging. Educational outreach to potential buyers of Level 2 plug-in vehicles is a critical aspect of facilitating implementation of EVs and EVSE.

Through our research, we found that an inordinate amount of online information is outdated and inaccurate. As the popularity of EVs expands, the market is increasingly inundated with new technology and so the difficulty in finding accurate information increases accordingly. To suit the diversity of consumer needs, different electric vehicle models are manufactured with a wide range of features. Though providing equipment options to potential buyers can offer benefits, it complicates the process of outlining clear instructions for residential charging installation. Each EV model has unique charging infrastructure requirements to suit the size of the battery pack and other structural components of the car. The process of establishing a standardized charging station is underway and could be an important step in simplifying the EVSE installation process so that it is easily relayed through public information outlets.

The safe operation of EVSE among potential adopters of plug-in vehicles is also related to the degree of standardization within the industry. Equipment manufacturers provide instructions for use at this time and inspectors ensure proper installation. A homeowner who purchases and operates a plug-in vehicle charging system should
ensure that risks are properly insured and that other residents or visitors are aware of potential hazards. Public information and education may be more important in regards to the safe operation of public EVSE. Registered users who are given safety guidelines will most likely operate public charging station installations, however, credit card payment methods make the some stations available to the public at large and so a broader educational outreach campaign could prove beneficial.

EV charging infrastructure installation education for fleet managers could facilitate an improved implementation of plug-in vehicles and infrastructure, as well. Beyond workshops to inform fleets about vehicle availability and selection options, training sessions that provide overviews on EVSE installation projects could ease anxieties about uncertainty in the process. The City of Raleigh, North Carolina, produced a video that provides a step-by-step guide to installing EVSE. This type of information can show a fleet exactly what to expect when deciding to deploy electric vehicles with corresponding infrastructure. This type of technical training could aid fleet implementation of plug-in vehicles and infrastructure.

As EVs implementation progresses, there will become an increased need for safety training among first responders, public safety officers, construction permitting officials and others. It is standard for fire fighters and police to undergo extensive training and attend regular continuing education programs through their employer so our stakeholders suggest that trainings could be held at fire departments as an addition to existing curriculum. Public safety and permitting officials are familiar with the electrical codes that dictate safe EVSE installations but perhaps may still benefit from training.

One of the most important groups to receive education regarding plug-in vehicles, automobile mechanics, may also require the simplest information. Training for mechanics in general automotive repair shops would be valuable for purchasers of plug-in vehicles so that the car owner would not have to go back to the dealership for all auto maintenance. Training could quickly cover the main differences between gasoline and electric vehicles. Input from GBRCCC member, the Capital Area Technical College, suggests that certifications are not likely needed since the material level of difficulty is minimal and the process of certification may be prohibitively burdensome for mechanics. The specialized workforce training for mechanics necessary to accommodate electric vehicles could take the form of workshops available through technical college.

6) **ANALYSIS OF OTHER BARRIERS:**

Potential barriers to deployment of plug-in vehicles in the Greater Baton Rouge area are similar to those for other advanced technology automobiles. Some of the factors which GBRCCC identified as prohibitive to adoption of EVs include: range anxiety, concerns with battery technology, expectations of more advanced vehicles arriving in the near-term, inability to pay relatively higher initial cost, and uncertainty regarding the value of emission reductions along with general misunderstandings. This section will discuss each of these factors, review room for improvement regarding incentives and analyze steps necessary to minimize barriers to implementation.
Range anxiety represents the consumer discomfort with having driving distance restricted to battery charge. It is real in terms of limitations for long-distance travel until the time comes when roadside charging is readily available. For this reason, households that do purchase a plug-in vehicle will most likely be those who have another vehicle available for long distances. Range anxiety still may be a perceived barrier among commuters who often need to make additional stops along their route and whose expected daily vehicle miles traveled varies significantly.

Concerns with battery technology are primarily related to the expected life before replacement is required and then the cost of that replacement battery. Additionally, the recognition of battery technology limitations lends itself to the expectation of improvements in both the battery range and life expectancy. These parallel barriers are not prohibitive of overall plug-in vehicle adoption but do delay the expediency of EV implementations for consumers, public entities and commercial fleets alike.

Despite the availability of both federal and state tax incentives, we recognize the validity in a statement made by an EV Feasibility Input Forum attendee, “it’s about price, convenience and momentum to the average consumer.” The additional upfront expense to purchase a plug-in vehicle is still prohibitive considering the delay in receipt of credit, the hassle of interpreting and applying for the credit and, in our area, the lack of precedence of purchases all contribute to the inability for a consumer to pay the relatively higher initial purchase cost.

Another factor that creates uncertainty regarding the value of a plug-in vehicle is the perceived importance of vehicle emission reductions. Even though our 5-parish region has a history of ozone non-attainment with Clean Air Act standards, there is a sociopolitical unwillingness to accept notions of environmental protection that undermines the benefits of relatively clean fuels such as electricity. Additionally, there are questions about how clean and efficient electricity is as a fuel. In our area, where natural gas is used in utility generation, the fuel is seen as cleaner burning than gasoline; however there are losses through transmission that have yet to be measured.

During our EV Feasibility Input Forum, there was identification of misinformation regarding electric vehicle technologies and financial incentives. The prevalence of inaccurate or outdated information could be very prohibitive to the successful deployment of plug-in vehicles and infrastructure. Meanwhile, effectively communicating available incentives could be one of the most important goals of a deployment strategy, since most agreed that financial incentives would be the most powerful persuasive force to encourage the purchase of plug-in vehicles and the construction of EVSE infrastructure.

Although our region enjoys eligibility for both state and federal tax incentives for plug-in vehicles, there is room for improvement in adopting additional incentives. For example, an instant rebate at purchase rather than an income tax credit would expedite the receipt of incentive and make for a more tangible consumer reward. Additionally, participation in a carbon credit exchange market could provide a source of revenue over time for owners of electric vehicles. On the other hand, every day conveniences such as preferred parking for EVs and interstate express lanes could both provide incentives to
drivers and glamorize EVs among prospective buyers. These incentives should be adopted at the appropriate level of government or be addressed by the private markets.

Range anxiety is reduced by vehicle designs that incorporate an on-board generator to extend battery life, such as used in the Chevy Volt. Additionally, the construction of a strategic infrastructure corridor could provide sufficient EVSE coverage such that an average commuter trip or commercial duty cycle could conveniently access a charging location if necessary. This concept would involve a grid of urban charging infrastructure in high-density metropolitan areas that would then connect to other municipalities. A good example of this type of corridor design is the “Texas Triangle,” a project funded by an American Recovery and Reinvestment competitive Clean Cities grant award.xiv

Concerns with battery life technology and expectations that more advanced vehicles will arrive in the near-term are party a perceived problem that could be alleviated through educational outreach campaigns and partly a real problem that is already being addressed by the funding or research and development efforts. Further advancements in battery technologies are being pursued at national laboratories but GBRCCC is not aware of any projects focused on electric vehicle battery technology in our area but we do make an effort to publicize funding availabilities.

One of the points of agreement amongst attendees at the GBRCCC EV Feasibility Input Forum was the assertion that price is the primary factor determining who purchases a plug-in vehicle and when. The importance of initial cost dictates that when EV prices are comparable to gasoline, they may be purchased readily. One suggestion offered by a representative of the Louisiana Department of Environmental Quality was to investigate the possibility of pursuing funding though “beneficial environmental projects (BEPs).”xv These vehicles transfer corporate pollution fees toward initiatives of non-profit organizations that can offset the environmental impact. BEPs may be an especially attractive funding source since industrial emission reductions are becoming increasingly expensive so partnerships where a large company pays for a fleet conversion in order to receive credits may be a win-win

The general consensus arrived upon throughout our collection of stakeholder input regarding plug-in feasibility for our region was that the implementation would occur in the long term because of the time necessary to address these various barriers. Even though driving a plug-in vehicle has substantially lower operating costs and there are financial incentives available plus the prestige of driving “green”, these perks are not yet great enough in value to offset the uncertainties associated with emerging battery powered vehicles. Certain fleets and individuals are already very involved with initiating plug-in vehicle deployment and we think that this is a strong indicator that the market will develop within a 5-15 year timeline.
7) ROLE OF COALITION TO FACILITATE PLUG-IN VEHICLE IMPLEMENTATION

The Greater Baton Rouge Clean Cities Coalition currently has an active role in plug-in vehicle implementation and plans to continue that involvement into the future. Through our EV Stakeholder working group and targeted strategy sessions, we facilitate discussions between companies and organizations that are integral to market development at various points in the supply chain. While working with these stakeholders, we identify questions that are necessary for moving forward and then conduct research to find solutions. For example, while the LSU administration was considering a project proposal presented by Entergy and Verdek, GBRCCC held contract review meetings and invited the Public Service Commission to confirm there would be no regulatory issues arise from the installation of EVSE on campus.

Now that there are charging stations available for use by faculty, students and staff of Louisiana State University, GBRCCC is developing educational outreach materials and marketing information to support the pilot program project. Our promotion will be broadcast on various venues including campus computer lab public service announcements and social media. We may also hold special events on campus such as a movie screening of “What is the Electric Car?” Additionally, we will continue to solidify our partnership with the Capital Area Technical College and pursue funding that may be available for automotive mechanic training workshops or courses. Further, we are reaching out to dealerships in an effort to provide them with information about the campus charging stations so that they may also work to market plug-in vehicles to faculty, students and staff of LSU.

We recognize that our primary roles are connecting stakeholders and educating consumers. Clean Cities resources are currently available and represent the most comprehensive overviews of electric vehicle information. However, the consumer education process is complicated by the vast number of companies that produce charging stations, each with their own list of differing features. To clear up this ambiguity, an objective third-party database of relevant EVSE information, presented in a user-friendly format would be beneficial. In addition to identifying technical needs, those considering at home installations must also familiarize themselves with local registration and safety ordinances, which vary across regions. For these purposes, there seems to be a need for a guidebook to cover the EVSE installation process. Vehicle manufacturers generally direct customers to partner companies that produce residential charging stations for directions. For public EVSE, municipality and utility decision making could be assisted by a guide to best practices in EVSE citing and installation. Additionally, we recommend that Clean Cities continue to provide updates for each vehicle’s charging station requirements to enhance feasibility of EV purchases by the either individual consumers or commercial or public fleets.
IDENTIFICATION OF KEY CONTACTS/PERSONNEL

<table>
<thead>
<tr>
<th>Name of Organization or Company</th>
<th>Territory Served</th>
<th>Role in Implementation / Planning Efforts</th>
<th>Primary Contact Name</th>
<th>Phone</th>
<th>Email</th>
</tr>
</thead>
<tbody>
<tr>
<td>1) Entergy Louisiana</td>
<td>Louisiana</td>
<td>Electric Utility, initial provider of EVSE infrastructure</td>
<td>Morgan Stewart</td>
<td>(504) 846-6797</td>
<td>mstewa3@entergy.com</td>
</tr>
<tr>
<td>2) Verdek EV Solutions</td>
<td>Global</td>
<td>EVSE orders and installation planning</td>
<td>Guy Mannino</td>
<td>(770) 401 2120</td>
<td>gmannino@verdek.com</td>
</tr>
<tr>
<td>3) LSU Electrical Engineering</td>
<td>Louisiana</td>
<td>Research EVSE impacts on electrical grid and utility equipment</td>
<td>Sarah Schram</td>
<td>(225) 578-6027</td>
<td>sschram@lsu.edu</td>
</tr>
<tr>
<td>4) Capital Area Technical College</td>
<td>Greater Baton Rouge</td>
<td>Provide venue for EV mechanical training</td>
<td>Martin Duvic</td>
<td>(225) 359-9241</td>
<td>mduvic@catc.edu</td>
</tr>
<tr>
<td>5) Louisiana Department of Natural Resources</td>
<td>Louisiana</td>
<td>State Energy Office – Technology Assessment</td>
<td>Paula Ridgeway</td>
<td>(225) 342-2133</td>
<td>Paula.Ridgeway@LA.GOV</td>
</tr>
<tr>
<td>6) Louisiana Department of Environmental Quality</td>
<td>Louisiana</td>
<td>Policy Considerations</td>
<td>Paul Miller</td>
<td>(225) 219-3230</td>
<td>Paul.Miller@la.gov</td>
</tr>
<tr>
<td>7) Southern Strategy Group</td>
<td>Part of U.S. Strategy Group</td>
<td>Policy Considerations</td>
<td>Kevin Cunningham</td>
<td>(225) 381-0166</td>
<td>cunningham@sostrategy.com</td>
</tr>
<tr>
<td>8) East Baton Rouge Planning Commission</td>
<td>EBR City-Parish</td>
<td>Planning</td>
<td>Stephen Meyer</td>
<td>(225) 389-3144</td>
<td>smayer@brgov.com</td>
</tr>
<tr>
<td>9) Global- E</td>
<td>Global</td>
<td>Manufacturing & Supply Chain</td>
<td>Carl Guichard</td>
<td>(985) 960-7089</td>
<td>cguichard@global-e.us</td>
</tr>
</tbody>
</table>

Proposed EV Charging Locations in East Baton Rouge Parish
Household Income Levels in Baton Rouge

Coordinate System: GCS WGS 1984
Datum: WGS 1984
Units: Degree

Experian Simmons Consumer Survey 2009.

Created by: Matt Wyatt
Appendix 3: Population Enrolled in Public Colleges in Baton Rouge

Population Enrolled Public College, 2010

Coordinate System: GCS WGS 1984
Datum: WGS 1984
Units: Degree

Created by: Matt Wyatt
Source: Geographic Research, Inc. (2011)
Experian Simmons Consumer Survey 2009
Appendix 4:

Retired Market Segments in Baton Rouge

Coordinate System: GCS WGS 1984
Datum: WGS 1984
Units: Degree

Experian Simmons Consumer Survey 2009.
Toyota Number of Priuses in Baton Rouge

Coordinate System: GCS WGS 1984
Datum: WGS 1984
Units: Degree

Created by: Matt Wyatt
Experian Simmons Consumer Survey 2009.
Appendix 7:

East Baton Rouge Parish Private Fleet Locations

Note: Not all EBR fleets listed, e.g. private fleets with P.O. Box addresses.

Coordinate System: GCS WGS 1984
Datum: WGS 1984
Units: Degree

Source: GBRCCC Fleet Data.
Date: 10/28/2011
Created by: Matt Wyatt